On definitions of superharmonic functions
نویسندگان
چکیده
© Annales de l’institut Fourier, 1975, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
منابع مشابه
A Nevanlinna Theorem for Superharmonic Functions on Dirichlet Regular Greenian Sets
A generalization of Nevanlinna’s First Fundamental Theorem to superharmonic functions on Green balls is proved. This enables us to generalize many other theorems, on the behaviour of mean values of superharmonic functions over Green spheres, on the Hausdorff measures of certain sets, on the Riesz measures of superharmonic functions, and on differences of positive superharmonic functions.
متن کاملHarmonic and Superharmonic Majorants on the Disk
We prove that a positive function on the unit disk admits a harmonic majorant if and only if a certain explicit upper envelope of it admits a superharmonic majorant. We provide examples to show that mere superharmonicity of the data does not help with the problem of existence of a harmonic majorant. 1. Definitions and statements Let D stand for the open unit disk in the complex plane, and H(D) ...
متن کاملOn the mean value property of superharmonic and subharmonic functions
Recall that a function u is harmonic (superharmonic, subharmonic) in an open set U ⊂ Rn (n ≥ 1) if u ∈ C2(U) and Δu = 0 (Δu ≤ 0,Δu ≥ 0) on U . Denote by H(U) the space of harmonic functions in U and SH(U) (sH(U)) the subset of C2(U) consisting of superharmonic (subharmonic) functions in U . If A ⊂ Rn is Lebesgue measurable, L1(A) denotes the space of Lebesgue integrable functions on A and |A| d...
متن کاملIntegrability of Superharmonic Functions and Subharmonic Functions
We apply the coarea formula to obtain integrability of superharmonic functions and nonintegrability of subharmonic functions. The results involve the Green function. For a certain domain, say Lipschitz domain, we estimate the Green function and restate the results in terms of the distance from the boundary.
متن کاملThe boundary growth of superharmonic functions and positive solutions of nonlinear elliptic equations
We investigate the boundary growth of positive superharmonic functions u on a bounded domain Ω in R, n ≥ 3, satisfying the nonlinear elliptic inequality 0 ≤ −∆u ≤ cδΩ(x)u in Ω, where c > 0, α ≥ 0 and p > 0 are constants, and δΩ(x) is the distance from x to the boundary of Ω. The result is applied to show a Harnack inequality for such superharmonic functions. Also, we study the existence of posi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017